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Abstract

A novel numerical approach to solving Schr�odinger's equation as applied to quan-

tum well heterostructures is described. The quantum mechanical energy subbands,

wave functions and charge density are calculated based on a two-directional fourth-

order Runge-Kutta (RK4) algorithm. The algorithm is applied to well-de�ned quan-

tum well structures. Results are compared with analytic solutions to ensure nu-

merical accuracy. The approach is then extended to a self-consistent solution of the

Schr�odinger and Poisson equations applied to a Si/Si1�xGex/Si heterostructure. The

advantages of this method are compared to other solution techniques.
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Introduction

The use of heterojunctions, or heterostructures, to improve the performance of semi-

conductor devices was �rst suggested by Shockley in 1951 [1]. At that time semiconductor

technology was not mature enough to take advantage of such structures. Recent advances in

epitaxial �lm growth, via molecular beam epitaxy (MBE) and ultra-high vacuum chemical

vapor deposition (UHV/CVD), have enabled the deposition of single monolayers of semi-

conductor materials with unparalleled crystal perfection [2, 3]. These techniques enable

ultra-thin structures to be grown with very sharp bandgap o�sets, resulting in quantum

con�nement of carriers, not typically seen in classical device behavior [4]. Carrier con�ne-

ment e�ects is a strong motivation for studying the quantum mechanical behavior of such

structures, and thus requires the solution of Schr�odinger's equation. For an even more ac-

curate description of carrier con�nement e�ects on device behavior, a fully self-consistent

solution of the coupled Schr�odinger and Poisson equations is required [5].

This paper presents a robust numerical solution of the Schr�odinger equation applied to

various quantum well con�gurations. The numerical results are validated by comparison

to known analytic solutions for well-de�ned potential wells in terms of allowable energy

levels and wave functions. The advantages of this numerical approach are described and

compared to other solution techniques. A fully self-consistent numerical solution, coupling

the Schr�odinger and Poisson equations, is presented for the Si/Si1�xGex/Si heterostructure.

The iterative process of determining the wave function solutions of Schr�odinger's equation

from an initial potential distribution is described, followed by the calculation of the charge

density which is used in Poisson's equation to arrive at the new potential distribution.

The motivation for such a calculation arises from the con�nement of carriers within the

quantum well formed by the sharp bandgap o�sets between the various materials that form

the heterostructure device. The following sections cover the solution technique employed

to solve Schr�odinger's equation, comparison to analytic solutions of well-de�ned quantum
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wells, a description of the self-consistent solution of the coupled Schr�odinger and Poisson

equations applied to a Si/Si1�xGex/Si heterostructure, and �nally, a discussion of results

and conclusion.

Numerical Solution of the Schr�odinger Equation

The one-dimensional (1D), time-independent Schr�odinger equation is given by

d2 n
dz2

+
2m�

�h2
[En � V (z)] n = 0 (1)

where  n is the wave function solution, En is the eigen-energy, V(z) is the spatially varying

potential distribution, m� is the electron (or hole) e�ective mass, and �h is Planck's constant

divided by 2�. The numerical solution of Eq. (1) can be found as far back as 1967 [6]. Since

the 1D, time-independent Schr�odinger equation is an ordinary di�erential equation (ODE),

it can be solved by any of the standard methods for solving ODEs, e.g. Runge-Kutta

and Numerov [7, 8]. Depending upon the complexities of the given quantum mechanical

system, one approach may be favored over the others. For example, the Numerov method

can provide a solution with an aggregate truncation error of order O(�z)8 [9]. However,

this method is only valid for homogeneous quantum well systems in which there can be

no �rst-order derivative terms involving  n(z) or terms of the form d
dz

h
1

m�(z)
d n(z)
dz

i
. This

can be a limitation since many state-of-the-art semiconductor heterostructures are formed

from di�erent materials with di�erent e�ective masses, yielding spatially varying e�ective

mass terms in the Schr�odinger equation.

The fourth order Runge-Kutta (RK4) method takes advantage of a fourth order trun-

cation error and eliminates the computation and evaluation of the derivatives required in

a Taylor series method. The boundary conditions for the RK4 method can include both

Dirichlet and Neumann conditions, typically speci�ed at either the surface (z = 0), or the

bulk (z = zmax, where zmax is the location of the boundary furthest from the surface). The

RK4 method is also general enough to handle spatially varying material parameters.
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Since the one-dimensional Schr�odinger equation is an eigenvalue equation, standard nu-

merical matrix eigenvalue solutions are also possible (e.g. Jacobi or Gauss-Seidel iterative

algorithms). These techniques are viable for large linear systems. The limitation of such

a numerical approach to the solution of complex quantum well heterostructures is the fact

that only the eigenvalue solutions are obtained, with no ability to investigate continuum

solutions, or solutions for E > V (z). For room temperature device applications these

continuum solutions will be important.

In this work, a modi�ed version of the RK4 method of solution has been implemented,

namely the cross�re method [10, 11]. As opposed to the standard RK4 method where the

boundary conditions are speci�ed at either the surface (z = 0) or the bulk (z = zmax),

the boundary conditions for the cross�re method are speci�ed at a patchpoint, zpatch. For

single well systems the patchpoint can be arbitrarily de�ned anywhere inside the quantum

well. For the arbitrary quantum well shown in Figure 1, the patchpoint is de�ned as

zpatch =
z2 + z1

2
(2)

where z1 and z2 de�ne the quantum well boundaries.

The cross�remethod looks for solutions to Schr�odinger's equation by choosing a starting

energy value Emin and incrementing spatially from z = 0 to z = zpatch to �nd a corresponding

wave function  LR (where the subscript LR implies the left-to-right, or z = 0 to z = zpatch,

solution). A right-to-left (RL) (z = zmax to z = zpatch ) wave function,  RL, is found for the

same energy value. The two solutions are then matched at the patchpoint by the following

boundary conditions

 LR(z = zpatch) =  RL(z = zpatch) (3)

and
d LR
dz z=zpatch

=
d RL
dz z=zpatch

(4)

The �nal wave function solution is found by combining  RL and  LR which results in

a wave function,  (z), that is a combination of  RL and  LR, matched at zpatch. This
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approach avoids any instability in the RK4 method that arises from a non-optimal choice

of spatial discretization. Such instabilities, signi�ed by the appearance of unbounded, lower

eigen-energy solutions near the origin (z = 0), occured only for a one-way RK4 method,

independent of direction. A typical example of this stability problem is shown in Figure 2.

By dividing Eq.(4) by Eq.(3), a determinant formulation for the boundary conditions

is arrived at, namely,

 LR
d RL
dz z=zpatch

�  RL
d LR
dz z=zpatch

= 0 (5)

which can be written as

� =

�������
 LR  RL

d LR
dz

d RL
dz

������� = 0 (6)

The value of determinant � indicates whether a bound state solution has indeed been

found. If the determinant changes sign from one iteration to the next, then the eigenvalue

solution, or bound state, has been bracketed.

The numerical solution of Schr�odinger's equation based on the cross�re method �rst

establishes the minimum energy from which to start the eigen-energy search. The �rst

time through the energy loop the initial energy value is set to the lowest energy value

of the system, typically E1 = Emin. Schr�odinger's equation is then solved for the given

potential distribution V(z), at the speci�c energy E1, resulting in wave function solutions,

 1
RL and  

1
LR (where supercript 1 indicates the �rst energy loop), which are matched at the

patchpoint. Application of the boundary conditions yields the determinant, �1. The energy

is then incremented to E2 = Emin + �E, where �E is typically 1 meV. Corresponding

wave function solutions,  2
RL and  2

LR, are found and the resulting determinant, �2, is

calculated. If the product of �1 and �2 is less than zero, indicating a sign change in the

wave function solutions, then an eigen-energy has been bracketed between E1 and E2. A

graphical interpretation of this is shown in Fig. 3 where the wave function solutions are

shown to change sign at z = zpatch. The energy E2, and value of the determinant �2, are

then stored.
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Once an eigen-energy is bracketed a binary-search method is used to re�ne the eigen-

energy. The binary-search method divides the energy interval in two and proceeds to

recalculate a new  RL,  LR and � based upon the new energy, Enew = Ei+Ei+1
2

. The

binary search continues until the energy halving is less than �, where � = 0.0001 in these

computations. The eigen-energy is further re�ned by implementing a Regula-Falsi search

for the eigen-energy [8]. The Regula-Falsi search continues until the di�erence in energy,

�E = Enew - Eold, is less than �E, where �E can be set for arbitrary accuracy (e.g. �E =

10�10).

If the number of iterations required to achieve a speci�ed level of accuracy is exceeded,

then the energy is incremented by �E and the process is repeated. For example, if the

maximum number of iterations is speci�ed as 200, then if the number of iterations in the

eigen-energy search exceeds this value the search is stopped and the energy is incremented

by �E in order to begin the calculation of a new solution point. Once �E < �E then a

bound state has been found. This process continues until the entire energy loop has been

completed, e.g. E = Emax, or the energy exceeds the Fermi energy, EF . In the latter case

of E > EF , we assume no additional bound states exist [12].

Optimizing the Patchpoint Location

The location of the patchpoint, zpatch, is very important in order to optimize the solution

accuracy. For simple single quantum well con�gurations such as the �nite square well and

triangular well, the patchpoint need only be located somewhere within the well. Its location

relative to the boundaries is unimportant, assuming it does not coincide with a nodal value

of any given wave function solution. If zpatch does coincide with a wave function node (i.e.

zero crossing of wave function), for example z = W/2 for the �nite square well, then the

solution may be discontinuous at z = zpatch, though the eigen-energies will continue to be

accurate. If wave function nodal value locations are unknown, more than one iteration of

the problem may be required to yield a smooth, continuous wave function solution.

8



For more complicated quantum well systems, e.g. Si/Si1�xGex/Si heterostructures dis-

cussed in subsequent sections, more knowledge of the particular quantum well con�guration

and bias conditions is helpful in optimizing the patchpoint location. For example, if the

energy band con�guration for a given bias condition results in only the Si1�xGex quan-

tum well being populated, with few states in the Si surface well (see Figure 11), then the

patchpoint should be located inside the Si1�xGex well.

Comparison to Analytic Results

Finite Square Well Application

The numerical solution of Schr�odinger's equation is validated by comparing the numer-

ical results of a �nite square well to the analytic solution. The analytic solution of a given

�nite square well can be found in any standard quantum mechanics text [13]. Typically,

the solution is determined graphically based upon the boundary conditions that the wave

function solutions, and their �rst derivative, match at the well boundary. The �nite square

well shown in Figure 4, with W = 10 nm and Vo = -0.2 eV, results in eight bound states

with eigen-energies given in Table 1. The total number of bound states in a �nite square

well of depth Vo and width W can be found from [14]

NumberofStates = 1 + Int

2
4 2m�VoW

2

�2�h2

!1=2
3
5 (7)

where Int[x] indicates the integer part of x. For the square well described above, Eq.

(7) also yields eight eigen-energies. The numerical values of these eight eigen-energies are

shown in Table 1 along with the analytic results.

The numerical results are in excellent agreement with the analytic results, with a maxi-

mum error of less than 0.1% for the ground state and �rst three excited states. The highest

eigen-energy state results in an error of 0.28%. The resulting percent error are calculated

relative to the bottom of the quantum well, Vo. That is, we choose to de�ne the position
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n En(analytical) (eV) En(numerical)(eV ) Error (%)

1 -0.196817 -0.196826 0.0045

2 -0.187286 -0.187323 0.0185

3 -0.171460 -0.171544 0.0420

4 -0.149444 -0.149595 0.0755

5 -0.121422 -0.121661 0.1195

6 -0.087737 -0.088089 0.1760

7 -0.049149 -0.049632 0.2420

8 -0.008503 -0.009069 0.2830

Table 1: Eigen-energies of �nite square well of width W = 100 �A and depth of Vo = -0.2

eV, determined analytically and numerically.

of the energy level En, relative to the bottom of the quantum well Vo, as (En - Vo), which

gives the di�erence in energy between En and Vo. The relative error between the analytical

results and the numerical results is then de�ned by

Error(%) =
j[En(analytical)� Vo]� [En(numerical)� Vo]j

Vo

=
j[En(analytical)�En(numerical)]j

Vo
(8)

The larger error for the higher lying states is related to the increased energy separation

between the states as n increases. This will tend to degrade the accuracy of the numerical

solution. In actual device operation, however, the higher lying bound states do not get

populated due to the Fermi energy location. Therefore, in most applications only the �rst

two or three bound states are of signi�cant importance. The �rst three corresponding

wave function solutions for this example are shown in Fig. 5. The basic shapes of the

wave functions are sinusoidal inside the quantum well and decaying exponentials outside

the well, as expected from the analytical solution [13].
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n En(analytical) (eV) En(numerical) (eV) Error (%)

1 -0.1424539 -0.152067 0.2200

2 -0.0987644 -0.109143 0.0762

3 -0.0631652 -0.074195 0.0420

4 -0.0317343 -0.043546 0.0282

5 -0.0030132 -0.016091 0.0210

Table 2: Eigen-energies of triangular potential well of width W = 100 �A and depth Vo=

-0.2 eV, determined analytically and numerically.

Triangular Square Well Application

The numerical solution of the Schr�odinger equation for the triangular potential well

shown in Figure 6 with W = 10 nm and potential distribution given by

Vtrianglewell(z) = Vo (zF � 1) (9)

results in �ve bound states. Here, F is the slope of the potential well distribution. For a

triangular well with Vo = -0.2 eV, the slope of the potential well distribution is F = 2.0 x

10 5 eV/cm. The resulting eigen-energies are shown in Table 2 compared to the analytic

results.

The numerical results compare reasonably well for all of the eigen-energies. The smaller

percent error for the higher lying bound states is due to the fact that the higher lying states

are closer together than the lower lying states. Therefore, the relative error between the

analytic solution and the numerical solution will be smaller. This result is opposite to

the �nite square well case. Another component of error is due to the numerical solution

assuming a �nite well width, while the analytic solution assumes the well goes on forever

with a constant slope.
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The corresponding wave function solutions for this example are shown in Fig. 7. These

wave function solutions show similar behavior to the analytically derived wave function

solutions found in [15], which are Airy functions.

Coupling the Schr�odinger and Poisson Equations Nu-

merically

In order to calculate the self-consistent potential of a given quantum heterostructure

system, Poisson's equation must be solved to determine the electrostatic potential. Pois-

son's equation relates the potential to the charge density distribution in the semiconductor

heterostructure. The solution of Schr�odinger's equation provides the eigen-energies and

the corresponding wave functions. The wave functions are used in the calculation of the

charge density distribution. The charge density is calculated by summing the square of the

wave function solutions at each spatial increment and over all the populated bound states,

and multiplying this quantity by the number of carriers in each bound state (subband).

The electron charge density n(z) is given by

n(z) =
X
n

Nn j n(z)j
2 (10)

where Nn is the number of electrons per subband. This quantity is determined from the

two-dimensional density of states function, g2D(E), given by [14]

g2D(E) =
m�

��h2
(11)

The subband occupation density, Nn, is given by the integration of g2D(E) weighted by the

Fermi-Dirac distribution f(E). The Fermi-Dirac distribution function speci�es the prob-

ability that a given subband energy level, En, is occupied by an electron, at a speci�c

temperature [13], and is given by

f(E) =
1

1 + exp [(En � EF )=kBT ]
(12)
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Nn is then given by

Nn =
Z
1

En
g2D(E) f(E) dE (13)

The resulting integration yields

Nn =
kBTm

�

��h2
ln
�
1 + exp

�
EF � En
kBT

��
(14)

where kB is Boltzmann's constant and T is temperature.

The Poisson equation is given by

d2V (z)

dz2
= �

4�e2

�

�
n(z)� p(z) +N�

a �N+
d

�
(15)

where n(z) is the electron charge distribution, p(z) is the hole distribution, N�

a is the

ionized acceptor concentration, and N+
d is the ionized donor concentration. The dielectric

constant, �, is assumed to be spatially constant, and e is the electronic charge. Knowing the

charge density n(z) (neglecting p(z) if we consider electrons) and the background doping

concentration N�a and N+
d (which can also varies with position), Poisson's equation is solved

by a standard �nite di�erence routine. The second order di�erential d2V (z)
dz2

is rewritten,

assuming a centered-di�erence approach and a uniform one-dimensional mesh, as

d2V (z)

dz2
=
Vi+1 � 2Vi + Vi�1

�z2
(16)

where Vi is the potential at the ith node of a one-dimensional mesh representing the quan-

tum well of interest, and �z is the mesh nodal spacing. Substituting Eq.(16) into Eq.(15)

yields

Vi+1 � 2Vi + Vi�1 =
�4�e2�z2

�

h
n(z)� p(z) +N�

A �N+
D

i
(17)

This equation relates the potential at the ith node to the potential at the ith+1 and ith-1

nodes, as well as the node spacing �z and the charge density. The boundary conditions

for the solution of Poisson's equation are given by

V (z) jz=0= Vo (18)
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and
dV (z)

dz
jz=zmax= 0 (19)

These conditions force the self-consistent solution to be equal to the original surface po-

tential V(z=0) = Vo, and also require the electric �eld to be zero at z = zmax. The �nite

di�erence algorithm must then account for Dirichlet boundary conditions at z = 0, and

Neumann boundary conditions at z = zmax. Equation (17) can be written in matrix form

as 2
6666666666664

1 �0:5 0 � � � 0 0

�0:5 1 �0:5 � � � 0 0
. . .

0 0 0 � � � 1 �0:5

0 0 0 � � � �0:5 1

3
7777777777775

2
6666666666664

V1

V2
...

Vn�1

Vn

3
7777777777775
=

2
6666666666664

��z2�(z) + Vo

��z2�(z)
...

��z2�(z)

�3
2�z

2�(z)

3
7777777777775

(20)

where �(z) = �4�e2

�

h
n(z)� p(z) +N�

A �N+
D

i
. This matrix equation is solved by a stan-

dard tridiagonal matrix solver.

In order to determine if the calculated potential distribution V(z) is self-consistent,

the error between the new and old potentials must be calculated. Vnew(z) must be mixed

with the old Vold(z) in order to ensure convergence of the algorithm. If Vnew(z) is simply

substituted back into Schr�odinger's equation, then the iterative process of calculating the

wave function solutions, charge density, and resulting potential distribution has been shown

not to converge [16]. The mixing of the old and new potential distribution is accomplished

by implementing the extrapolated convergence-factor method [16]. The mixing algorithm

is schematically shown in Figure 8. The equation representing the mixing algorithm is

given by

V (z) = V i+1
in (z) = V i

in(z) + f i+1in

h
V i
out(z)� V i

in(z)
i

(21)

The value of fi+1in is chosen between 0.05 and 0.1. This factor represents the mixing fraction

of new and old potentials. If fi+1in is too large then the algorithm may run quickly but can
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also diverge. If it is too small, then the convergence is slow. In this work fi+1in is typically set

to 0.05. It is also possible to vary fi+1in from iteration to iteration [16]. Once the mixing is

complete, the self-consistent solution of the ith iteration is compared to the (i-1)th solution

by calculating

�2 =
X
z

2
4(V i

sc(z)� V i�1
sc (z))

2

V 2
o

3
5 (22)

If �2 � 10�3 then the self-consistent solution has been found. A detailed 
ow diagram of

the self-consistent calculation is shown in Figure 9.

Self-Consistent Solution of the Schr�odinger-Poisson

Equations Applied to Si/Si1�xGex/Si Heterostructures

The Si/Si1�xGex/Si heterostructure is expected to play a major role in Si-based het-

erostructural technologies of the future, including both bipolar and �eld-e�ect transistor

(FET) technologies. This is due to the structural and electrical compatibility of Ge and

Si, and also the sophistication of Si-based processing in general (e.g. oxide growth, pas-

sivation, etc.). Although the applications of such heterostructures are many, the focus of

this work is in calculating the energy subbands of an FET-like structure with a Si1�xGex

channel region.

By incorporating a Si1�xGex layer in the channel region of an FET device, the intrinsic

mobility increases due to a reduction in surface scattering. The reduced surface scattering

is achieved by incorporating the Si1�xGex layer a few nanometers away from the Si/SiO2

interface where carrier scattering reduces channel mobility.

The Si/Si1�xGex/Si energy band under study is shown in Figure 11. This energy band

con�guration will be found in a p-channel SiGe FET under inversion conditions. In this

case, holes will populate the quantum well formed by the Si/SiO2 interface and also the

Si/Si1�xGex/Si quantum well. The silicon substrate doping level is set at Na = 1017 cm�3,

the surface potential is set at Vo = -0.2eV, and room temperature operation (T = 300 K)
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n En

1 -0.236375

2 -0.219000

3 -0.199062

4 -0.173875

5 -0.165250

6 -0.145000

Table 3: Eigen-energies of Si/Si1�xGex/Si heterostructure.

is assumed. The di�erent e�ective masses and dielectric constants of Si and Si1�xGex are

accounted for by changing the values of m�

Si and �Si to m
�

SiGe and �SiGe as a function of

spatial location. The bandgap o�set between the Si1�xGex layer and the Si substrate is set

at 0.15 eV, corresponding to roughly a 20 % mole fraction of Ge present in the alloy (e.g.

x = 0.2).

The resulting eigen-energies for holes in the Si1�xGex quantum well and the Si surface

channel are shown in Table 3. The accompanying wave function solutions are shown in

Figure 12. For this example, most of the wave function solutions are localized within the

boundaries of the quantum well, while the two highest lying states are in the Si surface

channel, indicating that some of the associated charge density will reside in the Si surface

channel.

As Vo becomes increasingly negative, the Fermi energy rises higher in the surface chan-

nel well, and more of the wave functions begin to penetrate into the Si surface channel

region. As a consequence, a �nite amount of charge will tunnel quantum mechanically

from the Si1�xGex well into the surface channel well, where the carriers have lower mobil-

ity. As Vo continues to increase, a larger percentage of carriers �nd their way into the Si

surface channel well. This e�ect is shown in Figure 13 where the calculated charge density
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is plotted versus distance as a function of Vo.

Since optimal device performance is dependent upon the relative distribution of charge

between the Si1�xGex quantum well and the Si surface channel, the ability to simulate the

charge distribution within a SiGe FET is extremely advantageous. By varying the location

of the Si1�xGex quantum well relative to the surface channel, one can study the e�ects on

charge distribution and ultimately understand the optimal location of the Si1�xGex alloy

in a SiGe FET.

Conclusion

A robust numerical algorithm, based on a two-directional Fourth-Order Runge Kutta

solution technique, is presented for solving the 1D, time-independent Schr�odinger equation

as applied to semiconductor quantum well heterostructures. The numerical accuracy has

been veri�ed by comparison to well de�ned quantum well con�gurations with analytic

solutions. The advantages of this numerical approach compared to other viable numerical

algorithms, has been discussed. The numerical approach results in accurate solutions, and

o�ers the capability of extensions to more complex problems, including the ability to solve

systems with spatially varying e�ective mass and dielectric constant.

The self-consistent solution has been applied to Si/Si1�xGex/Si heterostructure FETs,

which o�er the advantages of heterostructures with the processing maturity of Si. The

applications of such structures are many. However, our focus has been on SiGe FETs. The

self-consistent solution has provided a means to investigate the e�ect of charge density

distribution in a SiGe MOSFET structure. As the band bending increases, the ratio of

Si channel charge to SiGe well charge can be minimized by incorporating a SiGe alloy

with smaller bandgap, resulting in a larger band o�set between the Si and Si1�xGex layers.

Variations in other SiGe FET parameters, such as the Si channel thickness and doping

density, and their e�ect on the charge distribution, can now be studied with the necessary
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quantum mechanical e�ects included.
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Figure Captions

Figure 1. Arbitrary quantum well describing the patchpoint location.

Figure 2. A typical example of the instability of a one-directional RK4 solution to

Schr�odinger's equation. Here the lowest lying eigen energy blows up due to non-optimal

spatial discretization.

Figure 3. Illustration of a sign change in the wave function  , at two di�erent energy

values Ei and Ei�1, resulting in a sign change in the determinant �. This indicates that

the eigen-energy is bracketed between Ei and Ei�1.

Figure 4. Finite square well of width W = 10 nm and depth of Vo = -0.2 eV.

Figure 5. Numerical wave function solutions for a �nite square well of width W = 10

nm and depth of Vo = -0.2 eV.

Figure 6. Triangular potential well of width W = 10 nm and depth of Vo = -0.2 eV.

Figure 7. Numerical wave function solutions for a triangular potential well of width W

= 10 nm and depth of Vo = -0.2 eV.

Figure 8. Schematic representation of the extrapolated convergence-factor method.

Figure 9. Flow diagram of complete self-consistent calculation.

Figure 10. Si/Si1�xGex/Si FET structure.

Figure 11. Si/Si1�xGex/Si energy band for an p-channel SiGe FET biased in inversion.

Figure 12. Si/Si1�xGex/Si wave function solutions for Vo = 0.2 eV.

Figure 13. Charge density vs distance, as a function of Vo, for a Si/Si1�xGex/Si

heterostructure (T = 300 K).
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Figure 8:
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Figure 9:
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Figure 12:

o = -0.2 eV

∆ c= 0.15 eVE

ψ
(z

)
W

av
e 

Fu
nc

tio
n

V

-2

-3

-1

0

1

2

3

0 1 2 3 4 5

z (x 100 A)

SiO2 Si SiGe Well Si Substrate

7 BOUND STATES

o

T = 300 K

31



Figure 13:
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